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Why is dipole confinement interesting?

The lo Plasma Torus around Jupiter

J. Spencer

 Simplest confinement field * Possibility of fusion power source with near-
* High-4 confinement occurs classical energy confinement

naturally in magnetospheres e Opportunity to study new physics relevant
(B ~ 2 in Jupiter) to fusion and space science
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Dipole Plasma Confinement

e Toroidal confinement without
toroidal field

> Stabilized by plasma
compressibility
+ Not average well
+ No magnetic shear
> No neoclassical effects

» No TF or interlocking coils

* Poloidal field provided by
internal coil

> Steady-state w/o current drive
» J;,=0-> no kink instability drive

High Pressure Low Pressure
Small Volume Large Volume

If pV/" = p,V,”, then interchange does

not change pressure profile.

dinT = %, density and
dinn 3

temperature profiles are also stationary.

For n =
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Dipole Confinement continued...

Marginally stable profiles satisfy adiabaticity condition.
» M.N. Rosenbluth and Longmire, Ann. Phys. 1 (1957) 120.
5

5(pV') =0, whereV:fd—BI, =3

Equilibria exist at high-£ that are interchange and ideal
ballooning stable

For marginal profiles with 1 < 2/3, dipoles are also drift wave
stable.

> Near-classical confinement ?
No Magnetic Shear -> Convective cells are possible

» For marginal profiles, convective cells convect particles but not energy.

* Possible to have low T, with high ;.

» But, good curvature region near ring, convective cells can cause
anomalous transport
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Convective Cells

* How are they formed?
> Are they the nonlinear

w saturation of interchange
modes?
| » How asymmetric does the
" _ heating profile need to be to
| \__,,/ drive them?

< 1\\\;“_;___!'// e Do they degrade energy

. - ~ . / P - .
e Y confinement?
Ee W A --._.’T){ / /\ .
A ‘.:,0;;;-“’“7" » Can we have high energy
S, o* i . . .
g y o 1\ —_— confinement with low particle
\ ‘"i 2 g s confinement?
50 ' / o
\\7{%\/ e Explore methods for driving
T and limiting.

> Current drive ?
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LDX Experimental Goals

* |nvestigate high-beta plasmas stabilized by compressibility

> Also the stability and dynamics of high-beta, energetic particles in dipolar magnetic
fields

» Examine the coupling between the scrape-off-layer and the confinement and stability
of a high-temperature core plasma.

e Study plasma confinement in magnetic dipoles

> Explore relationship between drift-stationary profiles having absolute interchange
stability and the elimination of drift-wave turbulence.

> Explore convective cell formation and control and the role convective cells play in
transport in a dipole plasma.

» The long-time (near steady-state) evolution of high-temperature magnetically-confined
plasma.

* Demonstrate reliable levitation of a persistent superconducting ring
using distant control coils.
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LDX: Experimental Overview

* LDX consists 3 major
components:

> a high performance super
conducting floating coil

» charging coil
» vacuum vessel

e Other components include
» Launcher/Catcher system
» Control system & coils
> Levitation coil

» Plasma heating system (multi-
frequency ECRH)
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LDX Vacuum Vessel

e Vacuum Vessel W
> Specifications o

+ 5 meter (198”) diameter, 3 m high,
elevated off chamber floor

+ 11.5 Ton weight _

» Manufactured by Vacuum Technology ' 2 :".--‘.-'- -
Associates / DynaVac ~ €4

* Ports

» 2 50" ports (for floating ring
installation)

»> 2 24” ports for cryopumping
> 10 16.5” horizontal diagnostic ports
» 810” horizontal ports
> 8 laser alignment ports
» Room for more!
e Construction Complete!
» Pumped down and leak checked
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LDX Floating Coil Overview

* Unique high-performance
Nb3Sn superconducting coil
> 1.5 MA, 800 kJ
> 1300 Ibs weight Helium
> 8 hr levitation
» Inductively charged
e Cryostat made from 3 concentric tori Radiation

. Shield
» Design < 1 Watt heat leak

> Helium Pressure Vessel
* Holds 1.5kg of He
+ 125 Atm at room temperature
+ Cooling tube heat exchanger
» Lead Radiation Shield
¢ 75 kg Pb, good thermal capacity

» Quter Vacuum Shell
+ Laser alignment surface

Vacuum
Shell
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F-Coil Cross-Section

1

}BH]

3 4 T
1\ 2\ N\
"1' I’
I | N\
Ndii\>'g
O
)
O
| 1l AN
O ‘
5 I 1
. ;

10.
1.
12.
13.

Magnet Winding Pack
Heat Exchanger tubing

Winding pack centering
clamp

He Pressure Vessel
(Inconel 625)

Thermal Shield (Lead/glass
composite)

Shield supports (Pyrex)

He Vessel Vertical
Supports/Bumpers

He Vessel Horizontal
Bumpers

Vacuum Vessel (SST)
Multi-Layer Insulation

Utility lifting fixture

Laser measurement surfaces
"Visor" limiter attachment
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F-Coil Superconductor

* Nb3Sn cable-in-channel superconductor
manufactured in collaboration between
industry, universities and national

laboratories
Contracted Vendor IGC-AS < >
Strand production and testing IGC 8 mm
Cabling LBL
Heat treatment BNL
Soldering into Cu channel IGC
Conductor sample testing BNL

Conductor quality assurance MIT/Everson

o “State of the Art” conductor now complete
» Samples tested and meet performance
requirements
¢ >2000 Amps @ 6T and 10K

» Currently being wound at Everson Electric
on magnet coil form.
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Superconducting Charging Coil

* Large superconducting coil

LN2 Fill, Vent, Supports h &LSZ ;ljélel’s\[;éiz 7
. SN2 Can & 80K Shield
» NbTi conductor e
. L Lite Can & SC Coil ‘J,
+ 4.5°K LHe pool-boiling cryostat I I
with LN2 radiation shield gD

» 1.2 m diameter warm bore
> 5.6 T peak field
» 11.2 MJ stored energy

e Cycled 2X per day
» Charging time for F-Coil < 30 min.

e Fabrication Status

» Under contract with Efremov
Institute, St. Petersburg, Russia

> Expected delivery Winter 00/01.
+ “Critical Path” item for project.

RICTr 2-18/99
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LDX Experiment Cross-Section

Launcher/Catcher T P—a Levitation Magnet
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%PPP[ Launcher/Catcher

o “Simplified” Launcher/Catcher
can be used in both supported
and levitated operation

» In supported operation “bicycle”
wheels clamp floating coil in fixed
position

> In levitated operation, vertical
spacing of wheels is increased

» For upper levitation, all
components are outside LCFS
e Currently being designed at
PPPL

» Dynamic testing to begin in late
Spring 2000.
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Levitation Control System Schematic
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Multi-frequency ECRH on LDX

* Multi-frequency electron
cyclotron resonant heating

» Effective way to create high-£
hot electron population

» Tailor multi-frequency heating
power to produce ideal

(stable) pressure profile with
maximum peak f.

» Profile control and improved
e ECRH efficiency seen in mirror
== ]st Harmonic resonances

2nd Harmonic resonances program When USing mUItiple
frequencies.

‘ T T 0 R ‘ T 1 I I ‘ I I i M ‘ i [ T
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Instabilities & Confinement

\P + Instability should exist
-‘ ? |_ when: p' > p'critical

- 1 | * Investigate nature of
L instability

J\ﬂ/; R ; > How does it saturate?

» How much transport is
driven?

Per * Maximize 3 when:

P ? p P < P'eritical €VErywhere
P > What limits 8 ?
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Multi-frequency ECRH in ST-1Mirror
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FIG. 9. Total stored energy as a function of frequency separation for two-
frequency heating. The scale gives the electron energy for which the bounce
frequency is equal to the applied frequency mismatch.

e Widely spread (Af/f > 10%) multiple
frequencies allowed stable operation

> Low frequency fluctuations in cold
electron end losses are reduced by order
of magnitude

» Large increase in stored energy in high-3
hot electrons

* Narrowly spread (Af ~ o ,ce)
frequencies improved efficiency of hot

electron heating

» Elimination of super-adiabatic effects that
create phase-space barrier for further

heating of hot electrons.
% B. Quon et al, Phys. Fluids 28, (1985) 1503.
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Helmholtz Shaping Coils

I?:ore Vedge y ar
s( ) WheI'€V=fE,and)/—A

I:)edge core
Helmholtz Coil: 0 kA Helmholtz Coil: 80 kA
Compression Ratio: 228 Compression Ratio: 14

Adiabatic Pressure Ratio: 8500 Adiabatic Pressure Ratio: 85

Compressibility can be adjusted to change marginal stable pressure by factor of 100!
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LDX Experimental Plan

* Supported Dipole Hot Electron Plasmas
+ Spring 2001
» High- 5 Hot Electron plasmas with mirror losses
» ECRH Plasma formation
» Instabilities and Profile control

* Levitated Dipole Hot Electron Plasmas
* Winter 2001

» No end losses
> 3 enhancement

» Confinement studies
* Thermal Plasmas

» Convective cell studies
» Concept Optimization / Evaluation
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Hot Electron Plasmas

* Supported Dipole Campaign

» Low density, quasi steady-state plasmas formed by multi-
frequency ECRH with mirror losses
> Areas of investigation
+ Plasma formation
+ Density control
+ Pressure profile control
+ Supercritical profiles & instability
+ Compressibility Scaling
+ ECRH and diagnostics development

 Levitated Dipole Campaign

» No end losses

> Areas of investigation

¢+ Global Confinement
* 3 enhancement and scaling
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Hot Electron Plasma Diagnostics

Magnetics (flux loops, hall probes)

» Plasma equilibrium shape
» magnetic ($ & stored energy

Reflectometer
» Density profile

X-ray pulse height energy analyzer
» Hot electron energy distribution / profile

XUV arrays
» Instabilities and 2-D profiles

D, camera
Edge probes
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LDX Magnetics Measurements

Vacuum
Difference
g
0.0 0.5 1.0 . (m)15 2.0 2.5

e DC dipole field means standard
integrator diagnostics can be used

e Superconductor dipole “freezes-in”
flux giving an internal boundary
condition for GS solver

R (m)
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Future LDX Project Milestones

Floating Coil driven test

» Full current test with leads in test cryostat
F-Coil He pressure vessel sealed
Floating Coil & Charging Station Delivery

Integrated Systems Test

» Small current induced in F-Coil with copper coil
Charging Coil Delivery
First Plasma

First Levitation
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Conclusions

Physics of the dipole is interesting and important for
Fusion

LDX is the first experiment to investigate plasmas
stabilized by compressibility with near-classical
confinement

» Capable of directly testing effects of compressibility, pressure
profile control and axisymmetry on plasma stability and
confinement

LDX is a “world class” superconducting fusion
experiment

All major parts are either finished or under construction
Look out for us next year ! Watch http://www.psfc.mit.edu/ldx/

D. Garnier - ICC2000 - 26


http://www.psfc.mit.edu/ldx/

